Dissipative quasi-geostrophic equations with data.
We determine the asymptotics of the joint eigenfunctions of the torus action on a toric Kähler variety. Such varieties are models of completely integrable systems in complex geometry. We first determine the pointwise asymptotics of the eigenfunctions, which show that they behave like Gaussians centered at the corresponding classical torus. We then show that there is a universal Gaussian scaling limit of the distribution function near its center. We also determine the limit...
We give characterizations of the distributional derivatives , , of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given.
Let be a Brownian motion valued in the complex projective space . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of and of , and express them through Jacobi polynomials in the simplices of and respectively. More generally, the distribution of may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group yet computations become tedious. We also revisit the approach initiated in [13] and based on...
Two new time-dependent versions of div-curl results in a bounded domain are presented. We study a limit of the product , where the sequences and belong to . In Theorem 2.1 we assume that is bounded in the -norm and is controlled in the -norm. In Theorem 2.2 we suppose that is bounded in the -norm and is controlled in the -norm. The time derivative of is bounded in both cases in the norm of . The convergence (in the sense of distributions) of to the product of weak limits...
The idea of replacing a divergence constraint by a divergence boundary condition is investigated. The connections between the formulations are considered in detail. It is shown that the most common methods of using divergence boundary conditions do not always work properly. Necessary and sufficient conditions for the equivalence of the formulations are given.