Displaying 301 – 320 of 503

Showing per page

Stability for dissipative magneto-elastic systems

Reinhard Racke (2003)

Banach Center Publications

In this survey we first recall results on the asymptotic behavior of solutions in classical thermoelasticity. Then we report on recent results in linear magneto-thermo-elasticity and magneto-elasticity, respectively.

Stability in nonlinear evolution problems by means of fixed point theorems

Jaromír J. Koliha, Ivan Straškraba (1997)

Commentationes Mathematicae Universitatis Carolinae

The stabilization of solutions to an abstract differential equation is investigated. The initial value problem is considered in the form of an integral equation. The equation is solved by means of the Banach contraction mapping theorem or the Schauder fixed point theorem in the space of functions decreasing to zero at an appropriate rate. Stable manifolds for singular perturbation problems are compared with each other. A possible application is illustrated on an initial-boundary-value problem for...

Stability of Constant Solutions to the Navier-Stokes System in ℝ³

Piotr Bogusław Mucha (2001)

Applicationes Mathematicae

The paper examines the initial value problem for the Navier-Stokes system of viscous incompressible fluids in the three-dimensional space. We prove stability of regular solutions which tend to constant flows sufficiently fast. We show that a perturbation of a regular solution is bounded in W r 2 , 1 ( ³ × [ k , k + 1 ] ) for k ∈ ℕ. The result is obtained under the assumption of smallness of the L₂-norm of the perturbing initial data. We do not assume smallness of the W r 2 - 2 / r ( ³ ) -norm of the perturbing initial data or smallness of the...

Stability of hydrodynamic model for semiconductor

Massimiliano Daniele Rosini (2005)

Archivum Mathematicum

In this paper we study the stability of transonic strong shock solutions of the steady state one-dimensional unipolar hydrodynamic model for semiconductors in the isentropic case. The approach is based on the construction of a pseudo-local symmetrizer and on the paradifferential calculus with parameters, which combines the work of Bony-Meyer and the introduction of a large parameter.

Stability of oscillating boundary layers in rotating fluids

Nader Masmoudi, Frédéric Rousset (2008)

Annales scientifiques de l'École Normale Supérieure

We prove the linear and non-linear stability of oscillating Ekman boundary layers for rotating fluids in the so-called ill-prepared case under a spectral hypothesis. Here, we deal with the case where the viscosity and the Rossby number are both equal to ε . This study generalizes the study of [23] where a smallness condition was imposed and the study of [26] where the well-prepared case was treated.

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables which is...

Stability of periodic waves in Hamiltonian PDEs

Sylvie Benzoni-Gavage, Pascal Noble, L. Miguel Rodrigues (2013)

Journées Équations aux dérivées partielles

Partial differential equations endowed with a Hamiltonian structure, like the Korteweg–de Vries equation and many other more or less classical models, are known to admit rich families of periodic travelling waves. The stability theory for these waves is still in its infancy though. The issue has been tackled by various means. Of course, it is always possible to address stability from the spectral point of view. However, the link with nonlinear stability  - in fact, orbital stability, since we are...

Currently displaying 301 – 320 of 503