Displaying 321 – 340 of 591

Showing per page

On the existence of five nontrivial solutions for resonant problems with p-Laplacian

Leszek Gasiński, Nikolaos S. Papageorgiou (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of ( - Δ , W 1 , p ( Z ) ) . We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.

On the existence of multiple positive solutions for a certain class of elliptic problems

Aleksandra Orpel (2004)

Banach Center Publications

We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.

On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method

Atefe Goli, Sayyed Hashem Rasouli, Somayeh Khademloo (2025)

Applications of Mathematics

The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: ( - Δ ) s u + V ( x ) u + φ u - 1 2 u ( - Δ ) s u 2 = f ( x , u ) , x 3 , ( - Δ ) t φ = u 2 , x 3 , where ( - Δ ) α is the fractional Laplacian for α = s , t ( 0 , 1 ] with s < t and 2 t + 4 s > 3 . Under assumptions on V and f , we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.

On the existence of periodic solutions of an hyperbolic equation in a thin domain

Russell Johnson, Mikhail Kamenskii, Paolo Nistri (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.

Currently displaying 321 – 340 of 591