Nonexistence of radial positive solutions for a nonpositone problem.
In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.
We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
We consider the -critical focusing non-linear Schrödinger equation in -d. We demonstrate the existence of a large set of initial data close to the ground state soliton resulting in the pseudo-conformal type blow-up behavior. More specifically, we prove a version of a conjecture of Perelman, establishing the existence of a codimension one stable blow-up manifold in the measurable category.
The existence of stationary solutions and blow up of solutions for a system describing the interaction of gravitationally attracting particles that obey the Fermi-Dirac statistics are studied.
The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.
The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type where is the open ball of center and radius in , and is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.
We study existence and approximation of non-negative solutions of partial differential equations of the typewhere is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where is a convex function linked to by , we show that is the “gradient flow” of with respect to the 2-Wasserstein distance between probability measures on the space...
We study existence and approximation of non-negative solutions of partial differential equations of the type where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, is a suitable non decreasing function, is a convex function. Introducing the energy functional , where F is a convex function linked to f by , we show that u is the “gradient flow” of ϕ with respect to the 2-Wasserstein distance between probability measures on the space...
New Q-conditional symmetries for a class of reaction-diffusion-convection equations with exponential diffusivities are derived. It is shown that the known results for reaction-diffusion equations with exponential diffusivities follow as particular cases from those obtained here but not vice versa. The symmetries obtained are applied to construct exact solutions of the relevant nonlinear equations. An application of exact solutions to solving a boundary-value problem with constant Dirichlet conditions...
The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.