Periodic solutions to weakly nonlinear autonomous wave equations
In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
On prouve que le problème de Cauchy local pour l’équation d’onde sur-critique dans , , impair, avec et , est mal posé dans pour tout , où est l’exposant critique.
L'objet de cet exposé est l'étude d'équations d'évolution de type parabolique, périodiques, que l'on pénalise par un terme linéaire, antisymétrique. Par application des méthodes de S. Schochet pour le cas hyperbolique, on obtient un développement asymptotique des solutions de telles équations. La méthode suivie consiste à étudier l'influence de fortes oscillations en temps dans des systèmes paraboliques. Cette théorie est appliquée à deux systèmes décrivant le comportement de fluides géophysiques,...
This paper deals with linear partial differential-algebraic equations (PDAEs) which have a hyperbolic part. If the spatial differential operator satisfies a Gårding-type inequality in a suitable function space setting, a perturbation index can be defined. Theoretical and practical examples are considered.