Exponential stability of solutions of the Cauchy problem for a diffusion equation with absorption with a distribution initial condition.
Let be compact, convex sets in with and let be a linear, constant coefficient PDO. It is characterized in various ways when each zero solution of in the space of all -functions on extends to a zero solution in resp. in . The most relevant characterizations are in terms of Phragmén-Lindelöf conditions on the zero variety of in and in terms of fundamental solutions for with lacunas.
One proves, in the case of piecewise smooth coefficients, that the time derivative of the solution of the so called dam problem is a measure, extending the result proved by the same authors in the case of Lipschitz continuous coefficients.
The purpose of this paper is to extend the Díaz-Saá’s inequality for the unbounded domains as RN.The proof is based on the Picone’s identity which is very useful in problems involving p-Laplacian. In a second part, we study some properties of the first eigenvalue for a system of p-Laplacian. We use Díaz-Saá’s inequality to prove uniqueness and Egorov’s theorem for the isolation. These results generalize J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin’s work [9] for the first...
For the hypoelliptic differential operators introduced by T. Hoshiro, generalizing a class of M. Christ, in the cases of and left open in the analysis, the operators also fail to be analytic hypoelliptic (except for ), in accordance with Treves’ conjecture. The proof is constructive, suitable for generalization, and relies on evaluating a family of eigenvalues of a non-self-adjoint operator.
Soit le faisceau des sursolutions variationnelles d’un opérateur différentiel elliptique du second ordre à coefficients . Soit le faisceau des régularitées essentielles inférieures des éléments de . On démontre que est contenu dans un seul préfaisceau maximal de cônes convexes de fonctions s.c.i. vérifiant le principe du minimum sur une base d’ouverts suffisamment petits. On démontre que possède toutes les bonnes propriétés d’une théorie locale du potentiel.