Obere Schranken für Eigenfunktionen eines Operators - ... + q.
This paper considers Schrödinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) of the Dirichlet groundstate energy when the associated domain is perturbed. This interpretation relies on the distribution on the boundary of a stopped random process with Feynman-Kac weights. Practical computations require in addition the explicit approximation of the normal derivative of the groundstate on the boundary. We then propose to use this formulation in the...
In this review, we first recall a recent Bernoulli decomposition of any given non trivial real random variable. While our main motivation is a proof of universal occurence of Anderson localization in continuum random Schrödinger operators, we review other applications like Sperner theory of antichains, anticoncentration bounds of some functions of random variables, as well as singularity of random matrices.
We consider Schrödinger operators H = -Δ/2 + V (V≥0 and locally bounded) with Dirichlet boundary conditions, on any open and connected subdomain which either is bounded or satisfies the condition as |x| → ∞. We prove exponential decay at the boundary of all the eigenfunctions of H whenever V diverges sufficiently fast at the boundary ∂D, in the sense that as . We also prove bounds from above and below for Tr(exp[-tH]), and in particular we give criterions for the finiteness of such trace....
We discuss the existence of solutions for a system of elliptic equations involving a coupling nonlinearity containing a critical and subcritical Sobolev exponent. We establish the existence of ground state solutions. The concentration of solutions is also established as a parameter λ becomes large.
We develop the -approach to inverse scattering at zero energy in dimensions of [Beals, Coifman 1985], [Henkin, Novikov 1987] and [Novikov 2002]. As a result we give, in particular, uniqueness theorem, precise reconstruction procedure, stability estimate and approximate reconstruction for the problem of finding a sufficiently small potential in the Schrödinger equation from a fixed non-overdetermined (“backscattering” type) restriction of the Faddeev generalized scattering amplitude in the...
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
We prove the analog of the Cwikel-Lieb-Rozenblum estimate for a wide class of second-order elliptic operators by two different tools: Lieb-Thirring inequalities for Schrödinger operators with matrix-valued potentials and Sobolev inequalities for warped product spaces.