Ski de fond
Alain Dufresnoy (1983/1984)
Séminaire de théorie spectrale et géométrie
L. Aloui (2008)
Collectanea Mathematica
Shin-ichi Doi (1996/1997)
Séminaire Équations aux dérivées partielles
Saxena, R., Saxena, Ravi, Kalla, S. (2010)
Fractional Calculus and Applied Analysis
Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.The object of this article is to present the computational solution of one-dimensional space-time fractional Schrödinger equation occurring in quantum mechanics. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the H-function. It provides an elegant...
Dagmar Medková (1998)
Czechoslovak Mathematical Journal
For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
Makai, Mihály, Orechwa, Yuri (2002)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Horn, Werner (1999)
Southwest Journal of Pure and Applied Mathematics [electronic only]
V. Vougalter, V. Volpert (2012)
Mathematical Modelling of Natural Phenomena
We obtain solvability conditions in H6(ℝ3) for a sixth order partial differential equation which is the linearized Cahn-Hilliard problem using the results derived for a Schrödinger type operator without Fredholm property in our preceding article [18].
Wiesław Cupała (1993)
Studia Mathematica
The Itô integral calculus and analysis on nilpotent Lie grops are used to estimate the number of eigenvalues of the Schrödinger operator for a quantum system with a polynomial magnetic vector potential. An analogue of the Cwikel-Lieb-Rosenblum inequality is proved.
Yu Liu, Jing Zhang, Jie-Lai Sheng, Li-Juan Wang (2016)
Czechoslovak Mathematical Journal
Let be a Schrödinger operator and let be a Schrödinger type operator on , where is a nonnegative potential belonging to certain reverse Hölder class...
Liu, Yu, Ding, Youzheng (2008)
International Journal of Mathematics and Mathematical Sciences
A. Melin (1986/1987)
Séminaire Équations aux dérivées partielles (Polytechnique)
Anders Melin (1987)
Journées équations aux dérivées partielles
M. Klaus (1981)
Annales de l'I.H.P. Physique théorique
Arne Jensen (1977)
Mathematica Scandinavica
Hiroshi Isozaki (1989)
Journées équations aux dérivées partielles
Ernesto Buzano (2000)
Bollettino dell'Unione Matematica Italiana
In questo lavoro studiamo il resto relativo della formula asintotica per gli autovalori di un operatore differenziale in , ottenuta mediante il metodo delle proiezioni spettrali approssimate ([3], Theorem 6.2). In un primo tempo diamo un controesempio di un operatore di Schrödinger con potenziale a crescita algebrica, per il quale il resto non è limitato. Quindi specifichiamo alcune condizioni addizionali da imporre all'operatore in modo da avere un resto infinitesimo.
E. B. Davies (1979)
Annales de l'I.H.P. Physique théorique
T.H. Wolff, S.Y.A. Chang, J.M. Wilson (1985)
Commentarii mathematici Helvetici
P. K. J. Draxl (1974)
Mémoires de la Société Mathématique de France