Previous Page 5

Displaying 81 – 91 of 91

Showing per page

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cette article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique

Olivier Lablée (2007/2008)

Séminaire de théorie spectrale et géométrie

Dans cet article on décrit le spectre semi-classique d’un opérateur de Schrödinger sur avec un potentiel type double puits. La description qu’on donne est celle du spectre autour du maximum local du potentiel. Dans la classification des singularités de l’application moment d’un système intégrable, le double puits représente le cas des singularités non-dégénérées de type hyperbolique.

Symétrisations indépendantes du temps pour certains opérateurs du type de Schrödinger. I

Jiro Takeuchi (2002)

Bollettino dell'Unione Matematica Italiana

Si danno condizioni sufficienti e condizioni necessarie affinché il problema di Cauchy per alcuni operatori di tipo Schrödinger sia ben posto in spazi di Sobolev. Gli operatori qui considerati sono operatori di Schrödinger con potenziali vettoriali complessi, una generalizzazione degli operatori di 2-evoluzione nel senso di Petrowsky, e alcuni sistemi tipo Leray-Volevich di operatori lineari a derivate parziali. Il metodo che usiamo in questo articolo è la simmetrizazione L 2 degli operatori non dipendenti...

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Currently displaying 81 – 91 of 91

Previous Page 5