Displaying 301 – 320 of 601

Showing per page

Multiplicity of positive solutions for some quasilinear Dirichlet problems on bounded domains in n

Dimitrios A. Kandilakis, Athanasios N. Lyberopoulos (2003)

Commentationes Mathematicae Universitatis Carolinae

We show that, under appropriate structure conditions, the quasilinear Dirichlet problem - div ( | u | p - 2 u ) = f ( x , u ) , x Ω , u = 0 , x Ω , where Ω is a bounded domain in n , 1 < p < + , admits two positive solutions u 0 , u 1 in W 0 1 , p ( Ω ) such that 0 < u 0 u 1 in Ω , while u 0 is a local minimizer of the associated Euler-Lagrange functional.

Multiplicity of solutions for a singular p-laplacian elliptic equation

Wen-shu Zhou, Xiao-dan Wei (2010)

Annales Polonici Mathematici

The existence of two continuous solutions for a nonlinear singular elliptic equation with natural growth in the gradient is proved for the Dirichlet problem in the unit ball centered at the origin. The first continuous solution is positive and maximal; it is obtained via the regularization method. The second continuous solution is zero at the origin, and follows by considering the corresponding radial ODE and by sub-sup solutions method.

Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity

Djairo Guedes de Figueiredo, Jean-Pierre Gossez, Pedro Ubilla (2006)

Journal of the European Mathematical Society

We study the existence, nonexistence and multiplicity of positive solutions for the family of problems Δ u = f λ ( x , u ) , u H 0 1 ( Ω ) , where Ω is a bounded domain in N , N 3 and λ > 0 is a parameter. The results include the well-known nonlinearities of the Ambrosetti–Brezis–Cerami type in a more general form, namely λ a ( x ) u q + b ( x ) u p , where 0 q < 1 < p 2 * 1 . The coefficient a ( x ) is assumed to be nonnegative but b ( x ) is allowed to change sign, even in the critical case. The notions of local superlinearity and local sublinearity introduced in [9] are essential in this...

Multivalued nonpositone problems

David Arcoya, Marco Calahorrano (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this note, the existence of non-negative solutions for some multivalued non-positone elliptic problems is studied.

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces

Mihai Mihăilescu, Vicenţiu Rădulescu (2008)

Annales de l’institut Fourier

We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.

New linking theorems

Martin Schechter (1998)

Rendiconti del Seminario Matematico della Università di Padova

Currently displaying 301 – 320 of 601