Displaying 461 – 480 of 601

Showing per page

Regularity results for a class of obstacle problems in Heisenberg groups

Francesco Bigolin (2013)

Applications of Mathematics

We study regularity results for solutions u H W 1 , p ( Ω ) to the obstacle problem Ω 𝒜 ( x , u ) ( v - u ) d x 0 v 𝒦 ψ , u ( Ω ) such that u ψ a.e. in Ω , where 𝒦 ψ , u ( Ω ) = { v H W 1 , p ( Ω ) : v - u H W 0 1 , p ( Ω ) v ψ a.e. in Ω } , in Heisenberg groups n . In particular, we obtain weak differentiability in the T -direction and horizontal estimates of Calderon-Zygmund type, i.e. d T ψ H W loc 1 , p ( Ω ) T u L loc p ( Ω ) , | ψ | p L loc q ( Ω ) | u | p L loc q ( Ω ) , d where 2 < p < 4 , q > 1 .

Remarks on positive solutions to a semilinear Neumann problem

Anna Maria Candela, Monica Lazzo (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.

Sharp upper bounds for a singular perturbation problem related to micromagnetics

Arkady Poliakovsky (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct an upper bound for the following family of functionals { E ε } ε &gt; 0 , which arises in the study of micromagnetics: E ε ( u ) = Ω ε | u | 2 + 1 ε 2 | H u | 2 . Here Ω is a bounded domain in 2 , u H 1 ( Ω , S 1 ) (corresponding to the magnetization) and H u , the demagnetizing field created by u , is given by div ( u ˜ + H u ) = 0 in 2 , curl H u = 0 in 2 , where u ˜ is the extension of u by 0 in 2 Ω . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.

Sign-changing solutions and multiplicity results for some quasi-linear elliptic Dirichlet problems

Rebecca Walo Omana (2007)

Commentationes Mathematicae Universitatis Carolinae

In this paper we show some results of multiplicity and existence of sign-changing solutions using a mountain pass theorem in ordered intervals, for a class of quasi-linear elliptic Dirichlet problems. As a by product we construct a special pseudo-gradient vector field and a negative pseudo-gradient flow for the nondifferentiable functional associated to our class of problems.

Currently displaying 461 – 480 of 601