Regularity of the solutions for a Robin problem and some applications.
We study regularity results for solutions to the obstacle problem such that a.e. in , where , in Heisenberg groups . In particular, we obtain weak differentiability in the -direction and horizontal estimates of Calderon-Zygmund type, i.e. where , .
In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
Si dà una maggiorazione a priori in per le soluzioni di equazioni lineari ellittiche del secondo ordine...
We construct an upper bound for the following family of functionals , which arises in the study of micromagnetics:Here is a bounded domain in , (corresponding to the magnetization) and , the demagnetizing field created by , is given bywhere is the extension of by in . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.
We prove the existence of positive and of nodal solutions for , , where and , for a class of open subsets of lying between two infinite cylinders.
We prove the existence of positive and of nodal solutions for -Δu = |u|p-2u + µ|u|q-2u, , where µ > 0 and 2 < q < p = 2N(N - 2) , for a class of open subsets Ω of lying between two infinite cylinders.
In this paper we show some results of multiplicity and existence of sign-changing solutions using a mountain pass theorem in ordered intervals, for a class of quasi-linear elliptic Dirichlet problems. As a by product we construct a special pseudo-gradient vector field and a negative pseudo-gradient flow for the nondifferentiable functional associated to our class of problems.