On Solvability of a Nonlinear Elliptic Boundary Value Problem
We investigate the existence and stability of solutions for higher-order two-point boundary value problems in case the differential operator is not necessarily positive definite, i.e. with superlinear nonlinearities. We write an abstract realization of the Dirichlet problem and provide abstract existence and stability results which are further applied to concrete problems.
In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of . We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.
We show, by variational methods, that there exists a set open and dense in such that if then the problem , with subcritical (or more general nonlinearities), admits infinitely many solutions.
We investigate the existence of solutions for the Dirichlet problem including the generalized balance of a membrane equation. We present a duality theory and variational principle for this problem. As one of the consequences of the duality we obtain some numerical results which give a measure of a duality gap between the primal and dual functional for approximate solutions.
Following Morrey [14] we associate to any measurable symmetric matrix valued function such that
By deriving a variant of interpolation inequality, we obtain a sharp criterion for global existence and blow-up of solutions to the inhomogeneous nonlinear Schrödinger equation with harmonic potential We also prove the existence of unstable standing-wave solutions via blow-up under certain conditions on the unbounded inhomogeneity and the power of nonlinearity, as well as the frequency of the wave.