Displaying 21 – 40 of 53

Showing per page

Confining quantum particles with a purely magnetic field

Yves Colin de Verdière, Françoise Truc (2010)

Annales de l’institut Fourier

We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These...

Continuity of solutions of a nonlinear elliptic equation

Pierre Bousquet (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a nonlinear elliptic equation of the form div [a(∇u)] + F[u] = 0 on a domain Ω, subject to a Dirichlet boundary condition tru = φ. We do not assume that the higher order term a satisfies growth conditions from above. We prove the existence of continuous solutions either when Ω is convex and φ satisfies a one-sided bounded slope condition, or when ais radial: a ( ξ ) = l ( | ξ | ) | ξ | ξ a ( ξ ) = l ( | ξ | ) | ξ | ξ for some increasingl:ℝ+ → ℝ+.

Continuous dependence on function parameters for superlinear Dirichlet problems

Aleksandra Orpel (2005)

Colloquium Mathematicae

We discuss the existence of solutions for a certain generalization of the membrane equation and their continuous dependence on function parameters. We apply variational methods and consider the PDE as the Euler-Lagrange equation for a certain integral functional, which is not necessarily convex and coercive. As a consequence of the duality theory we obtain variational principles for our problem and some numerical results concerning approximation of solutions.

Continuum spectrum for the linearized extremal eigenvalue problem with boundary reactions

Futoshi Takahashi (2014)

Mathematica Bohemica

We study the semilinear problem with the boundary reaction - Δ u + u = 0 in Ω , u ν = λ f ( u ) on Ω , where Ω N , N 2 , is a smooth bounded domain, f : [ 0 , ) ( 0 , ) is a smooth, strictly positive, convex, increasing function which is superlinear at , and λ > 0 is a parameter. It is known that there exists an extremal parameter λ * > 0 such that a classical minimal solution exists for λ < λ * , and there is no solution for λ > λ * . Moreover, there is a unique weak solution u * corresponding to the parameter λ = λ * . In this paper, we continue to study the spectral properties of u * and show...

Convergence analysis for an exponentially fitted Finite Volume Method

Reiner Vanselow (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper is devoted to the convergence analysis of a well-known cell-centered Finite Volume Method (FVM) for a convection-diffusion problem in 2 . This FVM is based on Voronoi boxes and exponential fitting. To prove the convergence of the FVM, we use a new nonconforming Petrov-Galerkin Finite Element Method (FEM) for which the system of linear equations coincides completely with that of the FVM. Thus, by proving convergence properties of the FEM we obtain similar ones for the FVM. For the error...

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Convergence and regularization results for optimal control problems with sparsity functional

Gerd Wachsmuth, Daniel Wachsmuth (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...

Currently displaying 21 – 40 of 53