Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée
In this paper, we study the linear Schrödinger equation over the d-dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are...
In these lecture notes we describe the propagation of singularities of tempered distributional solutions of , where is a many-body hamiltonian , , , and is not a threshold of , under the assumption that the inter-particle (e.g. two-body) interactions are real-valued polyhomogeneous symbols of order (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...
Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30We consider an impedance boundary-value problem for the Helmholtz equation which models a wave diffraction problem with imperfect conductivity on a strip. Pseudo-differential operators are used to deal with this wave diffraction problem. Therefore, single and double layer potentials allow a reformulation of the problem into a system of integral equations. By using operator theoretical methods, the well-posedness of the problem...