Previous Page 10

Displaying 181 – 200 of 200

Showing per page

Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation

François Castella, Guillaume Dujardin (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we study the linear Schrödinger equation over the d-dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are...

Propagation of singularities in many-body scattering in the presence of bound states

András Vasy (1999)

Journées équations aux dérivées partielles

In these lecture notes we describe the propagation of singularities of tempered distributional solutions u 𝒮 ' of ( H - λ ) u = 0 , where H is a many-body hamiltonian H = Δ + V , Δ 0 , V = a V a , and λ is not a threshold of H , under the assumption that the inter-particle (e.g. two-body) interactions V a are real-valued polyhomogeneous symbols of order - 1 (e.g. Coulomb-type with the singularity at the origin removed). Here the term “singularity” provides a microlocal description of the lack of decay at infinity. Our result is then that the...

Pseudo-Differential Operators in a Wave Diffraction Problem with Impedance Conditions

Castro, L.P., Kapanadze, D. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 35J05, 35J25, 35C15, 47H50, 47G30We consider an impedance boundary-value problem for the Helmholtz equation which models a wave diffraction problem with imperfect conductivity on a strip. Pseudo-differential operators are used to deal with this wave diffraction problem. Therefore, single and double layer potentials allow a reformulation of the problem into a system of integral equations. By using operator theoretical methods, the well-posedness of the problem...

Currently displaying 181 – 200 of 200

Previous Page 10