Displaying 21 – 40 of 693

Showing per page

On a class of elliptic operators with unbounded coefficients in convex domains

Giuseppe Da Prato, Alessandra Lunardi (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the realization A of the operator A = 1 2 - ( D U , D ) in L 2 Ω , μ , where Ω is a possibly unbounded convex open set in R N , U is a convex unbounded function such that lim x Ω , x Ω U x = + and lim x + , x Ω U x = + , D U x is the element with minimal norm in the subdifferential of U at x , and μ d x = c exp - 2 U x d x is a probability measure, infinitesimally invariant for A . We show that A , with domain D A = u H 2 Ω , μ : D U , D u L 2 Ω , μ is a dissipative self-adjoint operator in L 2 Ω , μ . Note that the functions in the domain of A do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow...

On a class of nonlinear problems involving a p ( x ) -Laplace type operator

Mihai Mihăilescu (2008)

Czechoslovak Mathematical Journal

We study the boundary value problem - d i v ( ( | u | p 1 ( x ) - 2 + | u | p 2 ( x ) - 2 ) u ) = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a smooth bounded domain in N . Our attention is focused on two cases when f ( x , u ) = ± ( - λ | u | m ( x ) - 2 u + | u | q ( x ) - 2 u ) , where m ( x ) = max { p 1 ( x ) , p 2 ( x ) } for any x Ω ¯ or m ( x ) < q ( x ) < N · m ( x ) ( N - m ( x ) ) for any x Ω ¯ . In the former case we show the existence of infinitely many weak solutions for any λ > 0 . In the latter we prove that if λ is large enough then there exists a nontrivial weak solution. Our approach relies on the variable exponent theory of generalized Lebesgue-Sobolev spaces, combined with a 2 -symmetric version for even functionals...

On a class of nonlocal problem involving a critical exponent

Anass Ourraoui (2015)

Communications in Mathematics

In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

On a class of ( p , q ) -Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain

M.S. Shahrokhi-Dehkordi (2017)

Communications in Mathematics

Let Ω n be a bounded starshaped domain and consider the ( p , q ) -Laplacian problem - Δ p u - Δ q u = λ ( 𝐱 ) | u | p - 2 u + μ | u | r - 2 u where μ is a positive parameter, 1 < q p < n , r p and p : = n p n - p is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the ( p , q ) -Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.

On a construction of weak solutions to non-stationary Stokes type equations by minimizing variational functionals and their regularity

Hiroshi Kawabi (2005)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we prove that the regularity property, in the sense of Gehring-Giaquinta-Modica, holds for weak solutions to non-stationary Stokes type equations. For the construction of solutions, Rothe's scheme is adopted by way of introducing variational functionals and of making use of their minimizers. Local estimates are carried out for time-discrete approximate solutions to achieve the higher integrability. These estimates for gradients do not depend on approximation.

Currently displaying 21 – 40 of 693