A minmax problem for parabolic systems with competitive interactions.
We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.
A new nonlocal discrete model of cluster coagulation and fragmentation is proposed. In the model the spatial structure of the processes is taken into account: the clusters may coalesce at a distance between their centers and may diffuse in the physical space Ω. The model is expressed in terms of an infinite system of integro-differential bilinear equations. We prove that some results known in the spatially homogeneous case can be extended to the nonlocal model. In contrast to the corresponding local...
This note contains some remarks on the paper of Y. Naito concerning the parabolic system of chemotaxis and published in this volume.
This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the -norm, independent of the diffusion parameter . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...
This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...
The paper is concerned with an extension of the classical relation between the flame speed and the curvature-flow stretch, valid only for high Lewis numbers (diffusively stable flames). At low Lewis numbers the corresponding flame-flow system suffers short-wavelength instability, making the associated initial value problem ill-posed. In this study the difficulty is resolved by incorporation of higher-order effects. As a result one ends up with a reduced model based on a coupled system of second-order...
This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems. The reaction-diffusion...
We study the asymptotic behaviour () of the solutions of a nonlinear diffusion problem with strong absorption. We prove convergence to the stationary solution in the by means of an appropriate family of sub and supersolutions. In appendix we prove the well posedness of the problem.
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential...