Enhancement of Krylov subspace spectral methods by block Lanczos iteration.
In this paper, we study the question of existence and uniqueness of entropy solutions for a system of nonlinear partial differential equations with general anisotropic diffusivity and transport effects, supplemented with no-flux boundary conditions, modeling the spread of an epidemic disease through a heterogeneous habitat.
We discuss the existence of entropy solution for the strongly nonlinear unilateral parabolic inequalities associated to the nonlinear parabolic equations ∂u/∂t - div(a(x,t,u,∇u) + Φ(u)) + g(u)M(|∇u|) = μ in Q, in the framework of Orlicz-Sobolev spaces without any restriction on the N-function of the Orlicz spaces, where -div(a(x,t,u,∇u)) is a Leray-Lions operator and . The function g(u)M(|∇u|) is a nonlinear lower order term with natural growth with respect to |∇u|, without satisfying the sign...
We prove an existence result of entropy solutions for a class of strongly nonlinear parabolic problems in Musielak-Sobolev spaces, without using the sign condition on the nonlinearities and with measure data.
Une équation de la chaleur est construite dans laquelle le temps est la coordonnée radiale ; il en résulte des formules intégrales et des estimations de l’aire de diviseurs. La théorie de Littlewood-Paley est développée dans le cadre admissible.