Existence and decay of solutions of some nonlinear parabolic variational inequalities.
We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.
We study the existence of stationary and evolution solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles.
In this work we study the problem in , in , on , in , is a bounded regular domain such that , , , , and are positive functions such...
Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.
It is known that degenerate parabolic equations exhibit somehow different phenomena when we compare them with their elliptic counterparts. Thus, the problem of existence and properties of the Green function for degenerate parabolic boundary value problems is not completely solved, even after the contributions of [GN] and [GW4], in the sense that the existence problem is still open, even if the a priori estimates proved in [GN] will be crucial in our approach (...).
The theory of maximal monotone operators is applied to prove the existence of weak periodic solutions for a nonlinear nonlocal problem. The stability of these solutions is a consequence of the Lipschitz continuous assumption on the diffusivity matrix and the death rate.
For a class of semi-abstract evolution equations for sections on vector bundles on a three-dimensional compact manifold we prove that for initial values with certain symmetries strong solutions exist for all times. In case these solutions become small after some time, strong solutions exist also for small perturbations of these initial values. Many systems from fluid mechanics are included in this class.