Note to periodic solvability of the boundary value problem for nonlinear heat equation
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...
In this paper we study a linear population dynamics model. In this model, the birth process is described by a nonlocal term and the initial distribution is unknown. The aim of this paper is to use a controllability result of the adjoint system for the computation of the density of individuals at some time .
The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator () in the rectangle or with the Kolmogorov-type operator () in the rectangle , under an additive control supported in an open subset of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for and that there is no time for which it is null controllable for ....
We study the null controllability of the parabolic equation associated with the Grushin-type operator , in the rectangle , under an additive control supported in an open subset of . We prove that the equation is null controllable in any positive time for and that there is no time for which it is null controllable for . In the transition regime and when is a strip ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks to the particular...
The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.
Motivated by two recent works of Micu and Zuazua and Cabanillas, De Menezes and Zuazua, we study the null controllability of the heat equation in unbounded domains, typically or . Considering an unbounded and disconnected control region of the form , we prove two null controllability results: under some technical assumption on the control parts , we prove that every initial datum in some weighted space can be controlled to zero by usual control functions, and every initial datum in can...
Motivated by two recent works of Micu and Zuazua and Cabanillas, De Menezes and Zuazua, we study the null controllability of the heat equation in unbounded domains, typically or . Considering an unbounded and disconnected control region of the form , we prove two null controllability results: under some technical assumption on the control parts , we prove that every initial datum in some weighted L2 space can be controlled to zero by usual control functions, and every initial datum in L2(Ω)...
In this paper, we prove the global null controllability of the linear heat equation completed with linear Fourier boundary conditions of the form . We consider distributed controls with support in a small set and nonregular coefficients . For the proof of null controllability, a crucial tool will be a new Carleman estimate for the weak solutions of the classical heat equation with nonhomogeneous Neumann boundary conditions.
We prove the interior and boundary null-controllability of some parabolic evolutions with controls acting over measurable sets.
We prove the interior null-controllability of one-dimensional parabolic equations with time independent measurable coefficients.
We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.
We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.
Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV) numerical scheme in 2D for the solution of the regularized curvature driven level set equation is proved. Numerical experiments concerning comparison with exact solution and image filtering problem using proposed scheme are included.