The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 317

Showing per page

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space leading...

Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method

Luise Blank, Martin Butz, Harald Garcke (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The Cahn-Hilliard variational inequality is a non-standard parabolic variational inequality of fourth order for which straightforward numerical approaches cannot be applied. We propose a primal-dual active set method which can be interpreted as a semi-smooth Newton method as solution technique for the discretized Cahn-Hilliard variational inequality. A (semi-)implicit Euler discretization is used in time and a piecewise linear finite element discretization of splitting type is used in space...

Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes

Abdallah Bradji, Jürgen Fuhrmann (2013)

Applications of Mathematics

A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points...

Some aspects of the variational nature of mean curvature flow

Giovanni Bellettini, Luca Mugnai (2008)

Journal of the European Mathematical Society

We show that the classical solution of the heat equation can be seen as the minimizer of a suitable functional defined in space-time. Using similar ideas, we introduce a functional on the class of space-time tracks of moving hypersurfaces, and we study suitable minimization problems related with . We show some connections between minimizers of and mean curvature flow.

Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations

Peter Poláčik (2002)

Mathematica Bohemica

We consider three types of semilinear second order PDEs on a cylindrical domain Ω × ( 0 , ) , where Ω is a bounded domain in N , N 2 . Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of Ω × ( 0 , ) is reserved for time t , the third type is an elliptic equation with a singled out unbounded variable t . We discuss the asymptotic behavior, as t , of solutions which are defined and bounded on Ω × ( 0 , ) .

Some fast finite-difference solvers for two-dimensional evolutionary equations on special domains

Ta Van Dinh (1982)

Aplikace matematiky

The author proves the existence of the asymptotic error expansion to the Peaceman-Rachford finite-difference scheme for the first boundary value problem of the two-dimensional evolationary equation on the so-called uniform and nearly uniform domains. This expansion leads, by Richardson extrapolation, to a simple process for accelerating the convergence of the method. A numerical example is given.

Some Fractional Extensions of the Temperature Field Problem in Oil Strata

Boyadjiev, Lyubomir (2007)

Fractional Calculus and Applied Analysis

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed...

Some mathematical problems arising in heterogeneous insular ecological models.

Sébastien Gaucel, Michel Langlais (2002)

RACSAM

En esta nota se analizan dos modelos matemáticos deterministas planteados en problemas ecológicos causados por la introducción de nuevas especies en ambientes insulares heterogéneos. En el primero desarrollamos un modelo epidemológico con transmisión indirecta del virus por medio del ambiente. En el segundo se introduce un modelo específico de depredador-presa que exhibe la extinción en tiempo finito de las especies. Ambos modelos involucran sistemas de ecuaciones en derivadas parciales con interesantes...

Some models of Cahn-Hilliard equations in nonisotropic media

Alain Miranville (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive in this article some models of Cahn-Hilliard equations in nonisotropic media. These models, based on constitutive equations introduced by Gurtin in [19], take the work of internal microforces and also the deformations of the material into account. We then study the existence and uniqueness of solutions and obtain the existence of finite dimensional attractors.

Some (new) counterexamples of parabolic systems

Jana Stará, Oldřich John (1995)

Commentationes Mathematicae Universitatis Carolinae

We give examples of parabolic systems (in space dimension n 3 ) having a solution with real analytic initial and boundary values which develops the discontinuity in the interior of the parabolic cylinder.

Some new results on a Stefan problem in a concentrated capacity

Enrico Magenes (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.

Some new results related to the null controllability of the 1 - d heat equation

Antonio López, Enrique Zuazua (1997/1998)

Séminaire Équations aux dérivées partielles

We address three null controllability problems related to the 1 - d heat equation. First we show that the 1 - d heat equation with a rapidly oscillating density is uniformly null controllable as the period of the density tends to zero. We also prove that the same result holds for the finite-difference semi-discretization in space of the constant coefficient heat equation as the step size tends to zero. Finally, we prove that the null controllability of the constant coefficient heat equation can be obtained...

Currently displaying 121 – 140 of 317