Approximation of initial and boundary value problems for quasilinear first order equations
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle's current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) has a so-called McKean representation via such processes. Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside terminal...
We study oscillatory solutions of semilinear first order symmetric hyperbolic system , with real analytic .The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in with only the natural hypothesis of coherence.In the special case where has constant coefficients and the phases are linear, the solutions have asymptotic descriptionwhere the profile is almost periodic in .The main novelty in the analysis is the space of profiles which...
This paper is devoted to the investigation of quasilinear hyperbolic equations of first order with convex and nonconvex hysteresis operator. It is shown that in the nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is represented by a functional describing adsorption and desorption on the particles of the substance. An existence result is achieved by using an approximation of...