Displaying 141 – 160 of 221

Showing per page

On the mixed problem for hyperbolic partial differential-functional equations of the first order

Tomasz Człapiński (1999)

Czechoslovak Mathematical Journal

We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order D x z ( x , y ) = f ( x , y , z ( x , y ) , D y z ( x , y ) ) , where z ( x , y ) [ - τ , 0 ] × [ 0 , h ] is a function defined by z ( x , y ) ( t , s ) = z ( x + t , y + s ) , ( t , s ) [ - τ , 0 ] × [ 0 , h ] . Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.

On the mixed problem for quasilinear partial functional differential equations with unbounded delay

Tomasz Człapiński (1999)

Annales Polonici Mathematici

We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay D t z ( t , x ) = i = 1 n f i ( t , x , z ( t , x ) ) D x i z ( t , x ) + h ( t , x , z ( t , x ) ) , where z ( t , x ) X ̶ 0 is defined by z ( t , x ) ( τ , s ) = z ( t + τ , x + s ) , ( τ , s ) ( - , 0 ] × [ 0 , r ] , and the phase space X ̶ 0 satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.

On the numerical approximation of first-order Hamilton-Jacobi equations

Rémi Abgrall, Vincent Perrier (2007)

International Journal of Applied Mathematics and Computer Science

Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady problems.

On the perturbation propagation in the initial-boundary value problem for quasilinear first order equations.

Yu. G. Rykov (1993)

Publicacions Matemàtiques

The paper deals with initial-boundary value problem for generalized solutions of single quasilinear nonautonomous conservation law. For the case so-called "processes with aggravation" the localization property and inner boundedness are studied. Also in case when boundary function tends to zero as t ⇒ +∞ the localization effect is regarded.

On the relation of delay equations to first-order hyperbolic partial differential equations

Iasson Karafyllis, Miroslav Krstic (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on...

On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems

Carlos Parés, Manuel Castro (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

On the well-balance property of Roe's method for nonconservative hyperbolic systems. applications to shallow-water systems

Carlos Parés, Manuel Castro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys.102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

Optical leptons.

Kovachev, Lubomir M. (2004)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 141 – 160 of 221