Displaying 301 – 320 of 475

Showing per page

On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type

Jong Yeoul Park, Jeong Ja Bae (2002)

Czechoslovak Mathematical Journal

Let Ω be a bounded domain in n with a smooth boundary Γ . In this work we study the existence of solutions for the following boundary value problem: 2 y t 2 - M Ω | y | 2 d x Δ y - t Δ y = f ( y ) in Q = Ω × ( 0 , ) , . 1 y = 0 in Σ 1 = Γ 1 × ( 0 , ) , M Ω | y | 2 d x y ν + t y ν = g in Σ 0 = Γ 0 × ( 0 , ) , y ( 0 ) = y 0 , y t ( 0 ) = y 1 in Ω , ( 1 ) where M is a C 1 -function such that M ( λ ) λ 0 > 0 for every λ 0 and f ( y ) = | y | α y for α 0 .

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

On the Picard problem for hyperbolic differential equations in Banach spaces

Antoni Sadowski (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

B. Rzepecki in [5] examined the Darboux problem for the hyperbolic equation z x y = f ( x , y , z , z x y ) on the quarter-plane x ≥ 0, y ≥ 0 via a fixed point theorem of B.N. Sadovskii [6]. The aim of this paper is to study the Picard problem for the hyperbolic equation z x y = f ( x , y , z , z x , z x y ) using a method developed by A. Ambrosetti [1], K. Goebel and W. Rzymowski [2] and B. Rzepecki [5].

On the stability analysis of Darboux problem on both bounded and unbounded domains

Canan Çelik, Faruk Develi (2024)

Applications of Mathematics

In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.

Optimization problems for structural acoustic models with thermoelasticity and smart materials

Irena Lasiecka (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Optimization problem for a structural acoustic model with controls governed by unbounded operators on the state space is considered. This type of controls arises naturally in the context of "smart material technology". The main result of the paper provides an optimal synthesis and solvability of associated nonstandard Riccati equations. It is shown that in spite of the unboundedness of control operators, the resulting gain operators (feedbacks) are bounded on the state space. This allows to provide...

Currently displaying 301 – 320 of 475