Displaying 21 – 40 of 83

Showing per page

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

Nonhomogeneous boundary value problem for a semilinear hyperbolic equation

Andrzej Nowakowski (2008)

Applicationes Mathematicae

We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string x t t ( t , y ) - Δ x ( t , y ) + f ( t , y , x ( t , y ) ) = 0 in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.

Nonlinear compressible vortex sheets in two space dimensions

Jean-François Coulombel, Paolo Secchi (2008)

Annales scientifiques de l'École Normale Supérieure

We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...

Nonlinear feedback stabilization of a rotating body-beam without damping

Boumediène CHENTOUF, Jean-François COUCHOURON (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...

Nonlinear Hyperbolic Smoothing at a Focal Point

Jean-Luc Joly, Guy Métivier, Jeffrey Rauch (1998/1999)

Séminaire Équations aux dérivées partielles

The nonlinear dissipative wave equation u t t - Δ u + | u t | h - 1 u t = 0 in dimension d > 1 has strong solutions with the following structure. In 0 t < 1 the solutions have a focusing wave of singularity on the incoming light cone | x | = 1 - t . In { t 1 } that is after the focusing time, they are smoother than they were in { 0 t < 1 } . The examples are radial and piecewise smooth in { 0 t < 1 }

Nonlinear Pulse Propagation

Jeffrey Rauch (2001)

Journées équations aux dérivées partielles

This talk gives a brief review of some recent progress in the asymptotic analysis of short pulse solutions of nonlinear hyperbolic partial differential equations. This includes descriptions on the scales of geometric optics and diffractive geometric optics, and also studies of special situations where pulses passing through focal points can be analysed.

Currently displaying 21 – 40 of 83