Nonexistence of spatially localized free vibrations for a class of nonlinear wave equations.
We consider the systems of hyperbolic equations ⎧, t > 0, , (S1) ⎨ ⎩, t > 0, ⎧, t > 0, , (S2) ⎨ ⎩, t > 0, , (S3) ⎧, t > 0, , ⎨ ⎩, t > 0, , in with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.
We discuss the solvability of a nonhomogeneous boundary value problem for the semilinear equation of the vibrating string in a bounded domain and with a certain type of superlinear nonlinearity. To this end we derive a new dual variational method.
We study the lifespan of solutions to fully nonlinear second-order Cauchy problems with small real- or complex-analytic data. The nonlinear term is an analytic function in u, ū and their derivatives. We give an outline of the proof based on the method of majorants and the fixed point technique.
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear...
The nonlinear dissipative wave equation in dimension has strong solutions with the following structure. In the solutions have a focusing wave of singularity on the incoming light cone . In that is after the focusing time, they are smoother than they were in . The examples are radial and piecewise smooth in
This talk gives a brief review of some recent progress in the asymptotic analysis of short pulse solutions of nonlinear hyperbolic partial differential equations. This includes descriptions on the scales of geometric optics and diffractive geometric optics, and also studies of special situations where pulses passing through focal points can be analysed.