Displaying 21 – 40 of 125

Showing per page

The Cauchy problem for wave equations with non Lipschitz coefficients; Application to continuation of solutions of some nonlinear wave equations

Ferruccio Colombini, Guy Métivier (2008)

Annales scientifiques de l'École Normale Supérieure

In this paper we study the Cauchy problem for second order strictly hyperbolic operators of the form L u : = j , k = 0 n y j ( a j , k y k u ) + j = 0 n { b j y j u + y j ( c j u ) } + d u = f , when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with respect to all the variables. This class of equation is invariant under changes of variables and therefore suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of propagation for the noncharacteristic Cauchy problem. This provides an invariant...

The Child–Langmuir limit for semiconductors : a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical comparisons...

The Child–Langmuir limit for semiconductors: a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical...

The correct use of the Lax–Friedrichs method

Michael Breuß (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We are concerned with the structure of the operator corresponding to the Lax–Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax–Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version of...

The correct use of the Lax–Friedrichs method

Michael Breuß (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We are concerned with the structure of the operator corresponding to the Lax–Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax–Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version...

The critical nonlinear wave equation in two space dimensions

Michael Struwe (2013)

Journal of the European Mathematical Society

Extending our previous work, we show that the Cauchy problem for wave equations with critical exponential nonlinearities in 2 space dimensions is globally well-posed for arbitrary smooth initial data.

The energy method for a class of hyperbolic equations

Enrico Jannelli (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0. Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

The existence of Carathéodory solutions of hyperbolic functional differential equations

Adrian Karpowicz (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider the following Darboux problem for the functional differential equation ² u / x y ( x , y ) = f ( x , y , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b] 0 , a ] × ( 0 , b ] , where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation

Daniel Tataru (1999)

Journées équations aux dérivées partielles

The aim of this work is threefold. First we set up a calculus for partial differential operators with nonsmooth coefficients which is based on the FBI (Fourier-Bros-Iagolnitzer) transform. Then, using this calculus, we prove a weaker version of the Strichartz estimates for second order hyperbolic equations with nonsmooth coefficients. Finally, we apply these new Strichartz estimates to second order nonlinear hyperbolic equations and improve the local theory, i.e. prove local well-posedness for initial...

Currently displaying 21 – 40 of 125