Displaying 41 – 60 of 125

Showing per page

The geometrical quantity in damped wave equations on a square

Pascal Hébrard, Emmanuel Humbert (2006)

ESAIM: Control, Optimisation and Calculus of Variations

The energy in a square membrane Ω subject to constant viscous damping on a subset ω Ω decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate τ ( ω ) of this decay satisfies τ ( ω ) = 2 min ( - μ ( ω ) , g ( ω ) ) (see Lebeau [Math. Phys. Stud.19 (1996) 73–109]). Here μ ( ω ) denotes the spectral abscissa of the damped wave equation operator and  g ( ω ) is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion...

The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section

Dietmar Kröner, Philippe G. LeFloch, Mai-Duc Thanh (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl.74 (1995) 483–548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a class...

The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes

Jonathan Luk (2013)

Journal of the European Mathematical Society

We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region { r t 4 } .

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....

Currently displaying 41 – 60 of 125