Displaying 701 – 720 of 2236

Showing per page

Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation

Nikolay Tzvetkov, Nicola Visciglia (2013)

Annales scientifiques de l'École Normale Supérieure

Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.

Generalized method of lines for first order partial functional differential equations

W. Czernous (2006)

Annales Polonici Mathematici

Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...

Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

Bruno Després, Frédéric Lagoutière (2007)

International Journal of Applied Mathematics and Computer Science

We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005;...

Geometric optics expansions with amplification for hyperbolic boundary value problems: Linear problems

Jean-François Coulombel, Olivier Guès (2010)

Annales de l’institut Fourier

We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optimal energy estimate in Sobolev spaces showing that losses of derivatives must occur from the source terms...

Currently displaying 701 – 720 of 2236