Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws
Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...
Generalized solutions to quasilinear hyperbolic systems in the second canonical form are investigated. A theorem on existence, uniqueness and continuous dependence upon the boundary data is given. The proof is based on the methods due to L. Cesari and P. Bassanini for systems which are not functional.
Mathematics Subject Classification: 42B35, 35L35, 35K35In this paper we study generalized Strichartz inequalities for the wave equation on the Laguerre hypergroup using generalized homogeneous Besov-Laguerre type spaces.
The existence and uniqueness of solutions and convergence of successive approximations are considered as generic properties for generalized hyperbolic partial differential equations with unbounded right-hand sides.
We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005;...
We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optimal energy estimate in Sobolev spaces showing that losses of derivatives must occur from the source terms...
There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the...