Displaying 701 – 720 of 2234

Showing per page

Generalized method of lines for first order partial functional differential equations

W. Czernous (2006)

Annales Polonici Mathematici

Classical solutions of initial boundary value problems are approximated by solutions of associated differential difference problems. A method of lines for an unknown function for the original problem and for its partial derivatives with respect to spatial variables is constructed. A complete convergence analysis for the method is given. A stability result is proved by using differential inequalities with nonlinear estimates of the Perron type for the given operators. A discretization...

Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

Bruno Després, Frédéric Lagoutière (2007)

International Journal of Applied Mathematics and Computer Science

We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005;...

Geometric optics expansions with amplification for hyperbolic boundary value problems: Linear problems

Jean-François Coulombel, Olivier Guès (2010)

Annales de l’institut Fourier

We compute and justify rigorous geometric optics expansions for linear hyperbolic boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an amplification phenomenon for the reflection of small high frequency oscillations at the boundary. Our analysis has two important consequences for such hyperbolic boundary value problems. Firstly, we make precise the optimal energy estimate in Sobolev spaces showing that losses of derivatives must occur from the source terms...

Geometric renormalization of large energy wave maps

Terence Tao (2004)

Journées Équations aux dérivées partielles

There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the...

Currently displaying 701 – 720 of 2234