Displaying 941 – 960 of 2234

Showing per page

Limite de la solution de ut - ∆um + div F(u) = 0 lorsque m --> ∞.

Philippe Bénilan, Noureddine Igbida (2000)

Revista Matemática Complutense

Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.

Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions

Irina Kmit (2007)

Commentationes Mathematicae Universitatis Carolinae

We study one-dimensional linear hyperbolic systems with L -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.

Linear independence of boundary traces of eigenfunctions of elliptic and Stokes operators and applications

Roberto Triggiani (2008)

Applicationes Mathematicae

This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let λ i be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let φ i j j = 1 i be the corresponding linearly independent (normalized) eigenfunctions...

Line-energy Ginzburg-Landau models : zero-energy states

Pierre-Emmanuel Jabin, Felix Otto, BenoÎt Perthame (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a class of two-dimensional Ginzburg-Landau problems which are characterized by energy density concentrations on a one-dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero-energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero-energy state only if the domain is a disk and the state a vortex. Our proof is based on specific entropies which lead to a kinetic formulation, and on a careful...

Currently displaying 941 – 960 of 2234