Displaying 1001 – 1020 of 2236

Showing per page

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

Maximizers for the Strichartz Inequality

Damiano Foschi (2007)

Journal of the European Mathematical Society

We compute explicitly the best constants and, by solving some functional equations, we find all maximizers for homogeneous Strichartz estimates for the Schrödinger equation and for the wave equation in the cases when the Lebesgue exponent is an even integer.

Mesures semi-classiques et croisement de modes

Clotilde Fermanian-Kammerer, Patrick Gérard (2002)

Bulletin de la Société Mathématique de France

L’étude de la dynamique semi-classique d’électrons dans un cristal débouche naturellement sur le problème de l’évolution des mesures semi-classiques en présence d’un croisement de modes. Dans ce travail, nous étudions un système  2 × 2 qui présente un tel croisement. À cet effet, nous introduisons des mesures semi-classiques à deux échelles qui décrivent comment la transformée de Wigner usuelle se concentre sur l’ensemble des trajectoires rencontrant ce croisement. Puis nous établissons des formules...

Méthodes géométriques dans l’étude des équations d’Einstein

Serge Alinhac (2003/2004)

Séminaire Bourbaki

L’étude de l’équation des ondes et de ses perturbations a montré l’importance d’un certain nombre d’objets géométriques, tels que les cônes sortants et rentrants, les champs de Lorentz, des repères isotropes adaptés, etc. Parmi les systèmes d’équations hyperboliques non linéaires, les équations d’Einstein jouent un rôle central ; leur étude a nécessité, dans le cas d’un espace-temps courbe, la construction d’objets analogues à ceux du cas plat, cônes, repères adaptés, etc. La construction de ces...

Microlocal analysis and seismic imaging

Christiaan Stolk (2003/2004)

Séminaire Équations aux dérivées partielles

We study certain Fourier integral operators arising in the inversion of data from reflection seismology.

Minimal surfaces in pseudohermitian geometry

Jih-Hsin Cheng, Jenn-Fang Hwang, Andrea Malchiodi, Paul Yang (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider surfaces immersed in three-dimensional pseudohermitian manifolds. We define the notion of (p-)mean curvature and of the associated (p-)minimal surfaces, extending some concepts previously given for the (flat) Heisenberg group. We interpret the p-mean curvature not only as the tangential sublaplacian of a defining function, but also as the curvature of a characteristic curve, and as a quantity in terms of calibration geometry. As a differential equation, the p-minimal surface equation...

Currently displaying 1001 – 1020 of 2236