Displaying 1481 – 1500 of 2234

Showing per page

Problèmes mixtes hyperboliques bien-posés

Jean-François Coulombel (2004)

Journées Équations aux dérivées partielles

On présente une famille de problèmes mixtes hyperboliques linéaires bien-posés au sens de Hadamard. La nouveauté consiste à autoriser une perte de régularité entre les termes source et la solution. On montre ainsi que la condition de Lopatinskii faible est suffisante pour obtenir le caractère bien-posé des problèmes mixtes hyperboliques linéaires.

Propagation de la régularité locale de solutions d'équations hyperboliques non linéaires

Patrick Gérard, Jeffrey Rauch (1987)

Annales de l'institut Fourier

Pour tout réel positif s , on étudie la propagation de la régularité locale H s pour des solutions d’équations aux dérivées partielles hyperboliques non linéaires, admettant a priori la régularité minimale permettant de définir les expressions non linéaires figurant dans l’équation. En particulier, on démontre le théorème de propagation dans le cas des solutions essentiellement bornées (resp. lipschitziennes) de systèmes du premier ordre semi-linéaires (resp. quasi-linéaires).

Currently displaying 1481 – 1500 of 2234