Displaying 1661 – 1680 of 2234

Showing per page

Small time-periodic solutions to a nonlinear equation of a vibrating string

Eduard Feireisl (1987)

Aplikace matematiky

In this paper, the system consisting of two nonlinear equations is studied. The former is hyperbolic with a dissipative term and the latter is elliptic. In a special case, the system reduces to the approximate model for the damped transversal vibrations of a string proposed by G. F. Carrier and R. Narasimha. Taking advantage of accelerated convergence methods, the existence of at least one time-periodic solution is stated on condition that the right-hand side of the system is sufficiently small.

Solution of a linear model of a single-piston pump by means of methods for differential equations in Hilbert spaces

Ivan Straškraba (1986)

Aplikace matematiky

A mathematical model of a fluid flow in a single-piston pump is formulated and solved. Variation of pressure and rate of flow in suction and delivery piping respectively is described by linearized Euler equations for barotropic fluid. A new phenomenon is introduced by a boundary condition with discontinuous coefficient describing function of a valve. The system of Euler equations is converted to a second order equation in the space L 2 ( 0 , l ) where l is length of the pipe. The existence, unicity and stability...

Solutions classiques globales des équations d'Euler pour un fluide parfait compressible

Denis Serre (1997)

Annales de l'institut Fourier

Soit ρ , u , e , S et p les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est a priori d tout entier, mais ρ peut être nul en dehors d’un compact K ( t ) . On choisit l’équation d’état d’un gaz parfait, p = ( γ - 1 ) ρ e , où γ [ 1 , 1 + 2 / d ] est une constante. Le cas γ = 1 + 2 / d est celui du gaz mono-atomique.Dans la limite ρ 0 , les collisions sont rares et on est tenté d’approcher le mouvement des particules par un mouvement rectiligne uniforme : le champ de vitesse obéit alors...

Solutions globales ( - < t < + ) des systèmes paraboliques de lois de conservation

Denis Serre (1998)

Annales de l'institut Fourier

Nous considérons ici des solutions particulières des systèmes paraboliques de lois de conservation dans le domaine x > 0 ou bien pour x : t u + x f ( u ) = x 2 u . Nous faisons l’hypothèse que le système réduit t u + x f ( u ) = 0 est hyperbolique. Notre but est la description de l’interaction d’ondes simples, mono-dimensionnelles, le plus souvent deux ondes exactement. L’une d’elle, au moins, est une onde de choc (pour le système réduit) visqueuse (pour le système parabolique). Il y a donc a priori un champ caractéristique vraiment non linéaire....

Currently displaying 1661 – 1680 of 2234