Remark on the spatial regularity for the Navier-Stokes equations.
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in a subdomain . The result that we obtained in this paper is as follows. Suppose that is a given solution of the Navier-Stokes equations. Let be a given initial condition and where is small enough. Then there exists a locally distributed control such that the solution of the Navier-Stokes equations:coincides with...
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain . The result that we obtained in this paper is as follows. Suppose that is a given solution of the Navier-Stokes equations. Let be a given initial condition and where ε is small enough. Then there exists a locally distributed control such that the solution v(t,x) of the Navier-Stokes equations: coincides...
Nous démontrons dans cet article que le système MHD tridimensionnel à densité et viscosité variables est localement bien posé lorsque pour et la densité initiale est proche d’une constante strictement positive. Nous démontrons également un résultat d’existence et d’unicité dans l’espace de Sobolev pour sans aucune condition de petitesse sur la densité.
La compréhension du passage des équations de la mécanique des fluides compressibles aux équations incompressibles a fait de grands progrès ces vingt dernières années. L’objectif de cet exposé est de présenter l’évolution des méthodes mathématiques mises en œuvre pour étudier ce passage à la limite, depuis les travaux de S. Klainerman et A. Majda dans les années quatre–vingts, jusqu’à ceux récents de G. Métivier et S. Schochet (pour les équations non isentropiques). Suivant les conditions initiales...
We discuss recent results on the inviscid limits for the randomly forced 2D Navier-Stokes equation under periodic boundary conditions, their relevance for the theory of stationary space periodic 2D turbulence and some related conjectures.
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations. The constant in the corresponding abstract...
An abstract framework for constructing stable decompositions of the spaces corresponding to general symmetric positive definite problems into “local” subspaces and a global “coarse” space is developed. Particular applications of this abstract framework include practically important problems in porous media applications such as: the scalar elliptic (pressure) equation and the stream function formulation of its mixed form, Stokes’ and Brinkman’s equations....