Displaying 21 – 40 of 120

Showing per page

On caustics associated with Rossby waves

Arthur D. Gorman (1996)

Applications of Mathematics

Rossby wave equations characterize a class of wave phenomena occurring in geophysical fluid dynamics. One technique useful in the analysis of these waves is the geometrical optics, or multi-dimensional WKB technique. Near caustics, e.g., in critical regions, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to study Rossby waves near caustics.

On caustics associated with the linearized vorticity equation

Petya N. Ivanova, Arthur D. Gorman (1998)

Applications of Mathematics

The linearized vorticity equation serves to model a number of wave phenomena in geophysical fluid dynamics. One technique that has been applied to this equation is the geometrical optics, or multi-dimensional WKB technique. Near caustics, this technique does not apply. A related technique that does apply near caustics is the Lagrange Manifold Formalism. Here we apply the Lagrange Manifold Formalism to determine an asymptotic solution of the linearized vorticity equation and to study associated wave...

On evolution Galerkin methods for the Maxwell and the linearized Euler equations

Mária Lukáčová-Medviďová, Jitka Saibertová, Gerald G. Warnecke, Yousef Zahaykah (2004)

Applications of Mathematics

The subject of the paper is the derivation and analysis of evolution Galerkin schemes for the two dimensional Maxwell and linearized Euler equations. The aim is to construct a method which takes into account better the infinitely many directions of propagation of waves. To do this the initial function is evolved using the characteristic cone and then projected onto a finite element space. We derive the divergence-free property and estimate the dispersion relation as well. We present some numerical...

On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions

Miroslav Bulíček, Roger Lewandowski, Josef Málek (2011)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity ν polynomially increasing with a scalar quantity k that evolves according to an evolutionary convection diffusion equation with the right hand side ν ( k ) | 𝖣 ( v ) | 2 that is merely L 1 -integrable over space and time. We also formulate a conjecture concerning regularity...

On global solutions to a nonlinear Alfvén wave equation

XS. Feng, F. Wei (1995)

Annales Polonici Mathematici

We establish the global existence and uniqueness of smooth solutions to a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial asymptotic behavior of the solution is discussed.

On Large Eddy Simulation and Variational Multiscale Methods in the numerical simulation of turbulent incompressible flows

Volker John (2006)

Applications of Mathematics

Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these...

On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications

Lars Diening, Josef Málek, Mark Steinhauer (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study properties of Lipschitz truncations of Sobolev functions with constant and variable exponent. As non-trivial applications we use the Lipschitz truncations to provide a simplified proof of an existence result for incompressible power-law like fluids presented in [Frehse et al., SIAM J. Math. Anal34 (2003) 1064–1083]. We also establish new existence results to a class of incompressible electro-rheological fluids.

On local motion of a compressible barotropic viscous fluid bounded by a free surface

W. Zajączkowski (1992)

Banach Center Publications

We consider the motion of a viscous compressible barotropic fluid in ℝ³ bounded by a free surface which is under constant exterior pressure, both with surface tension and without it. In the first case we prove local existence of solutions in anisotropic Hilbert spaces with noninteger derivatives. In the case without surface tension the anisotropic Sobolev spaces with integration exponent p > 3 are used to omit the coefficients which are increasing functions of 1/T, where T is the existence time....

On nonstationary motion of a fixed mass of a general fluid bounded by a free surface

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2003)

Banach Center Publications

In the paper the motion of a fixed mass of a viscous compressible heat conducting fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state and the external force, the heat sources and the heat flow through the boundary vanish, we prove the existence of a global in time solution which is close to the equilibrium state for any moment of time.

On nonstationary motion of a fixed mass of a general viscous compressible heat conducting capillary fluid bounded by a free boundary

Ewa Zadrzyńska (1999)

Applicationes Mathematicae

The motion of a fixed mass of a viscous compressible heat conducting capillary fluid is examined. Assuming that the initial data are sufficiently close to a constant state and the external force vanishes we prove the existence of a global-in-time solution which is close to the constant state for any moment of time. Moreover, we present an analogous result for the case of a barotropic viscous compressible fluid.

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Martin Lanzendörfer, Jan Stebel (2011)

Applications of Mathematics

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.

On quasi-stationary models of mixtures of compressible fluids

Jens Frehse, Wladimir Weigant (2008)

Applications of Mathematics

We consider mixtures of compressible viscous fluids consisting of two miscible species. In contrast to the theory of non-homogeneous incompressible fluids where one has only one velocity field, here we have two densities and two velocity fields assigned to each species of the fluid. We obtain global classical solutions for quasi-stationary Stokes-like system with interaction term.

Currently displaying 21 – 40 of 120