Two-dimensional problems of stationary flow of a non-compressible viscous fluid in the case of Oseen's linearization.
We study pressure-driven, two-layer flow in inclined channels with high density and viscosity contrasts. We use a combination of asymptotic reduction, boundary-layer theory and the Karman-Polhausen approximation to derive evolution equations that describe the interfacial dynamics. Two distinguished limits are considered: where the viscosity ratio is small with density ratios of order unity, and where both density and viscosity ratios are small. The evolution equations account for the presence of...
This paper deals with the distributed and boundary controllability of the so called Leray-α model. This is a regularized variant of the Navier−Stokes system (α is a small positive parameter) that can also be viewed as a model for turbulent flows. We prove that the Leray-α equations are locally null controllable, with controls bounded independently of α. We also prove that, if the initial data are sufficiently small, the controls converge as α → 0+ to a null control of the Navier−Stokes equations....
It is well known that people can derive the radiation MHD model from an MHD- approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD- approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD- approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates...
We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when the bottom is flat. We generalize here this result with a new class of equations taking into account...
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
We consider the theory of very weak solutions of the stationary Stokes system with nonhomogeneous boundary data and divergence in domains of half space type, such as , bent half spaces whose boundary can be written as the graph of a Lipschitz function, perturbed half spaces as local but possibly large perturbations of , and in aperture domains. The proofs are based on duality arguments and corresponding results for strong solutions in these domains, which have to be constructed in homogeneous...
In this paper, we review recent results on wall laws for viscous fluids near rough surfaces, of small amplitude and wavelength ε. When the surface is “genuinely rough”, the wall law at first order is the Dirichlet wall law: the fluid satisfies a “no-slip” boundary condition on the homogenized surface. We compare the various mathematical characterizations of genuine roughness, and the corresponding homogenization results. At the next order, under...