Previous Page 4

Displaying 61 – 75 of 75

Showing per page

Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle

Gérard Gagneux, Olivier Millet (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Le système d’évolution de Nernst-Planck-Poisson-Boltzmann modélise les transferts ioniques en milieu poreux saturé en prenant en compte des interactions électrocapillaires au contact du substrat. Ce modèle présente un intérêt particulier en génie civil pour étudier la dégradation par corrosion des matériaux cimentaires, à structure micro-locale périodique, sous l’effet des ions chlorures. Les techniques d’homogénéisation sont alors un outil puissant pour élaborer un modèle macroscopique équivalent...

Sur quelques problèmes d’homogénéisation non locale et de fluides en milieu poreux : une contribution de Abdelhamid Ziani

Youcef Amirat, Kamel Hamdache (2007)

Annales mathématiques Blaise Pascal

Dans cet article nous présentons quelques problèmes et résultats d’homogénéisation non locale pour certaines équations de type dégénéré. Nous considérons des équations de transport, une équation des ondes dégénérée et une équation différentielle de Riccati, et nous décrivons dans chacun des cas les effets non locaux induits par homogénéisation. Nous donnons aussi quelques résultats sur l’analyse mathématique des équations des fluides miscibles en milieu poreux.

Sur un problème de stabilité posé en optique géométrique non linéaire surcritique

Christophe Cheverry (2008/2009)

Séminaire Équations aux dérivées partielles

Cet exposé s’intéresse à un modèle réaliste issu de la mécanique des fluides. L’objectif est de montrer qu’il est possible de traiter dans un tel cadre des problèmes d’instabilité soulevés par la propagation de singularités qualifiées de surcritiques. D’abord, nous introduisons le modèle (équations de type Navier-Stokes) et ses motivations (questions liées à la propagation d’oscillations en régime turbulent). Ensuite, nous présentons deux résultats (relatifs au caractère bien posé d’un problème...

Système d'Euler incompressible et régularité microlocale analytique

Pascal Gamblin (1994)

Annales de l'institut Fourier

Dans cet article on étudie la régularité analytique (ou Gevrey) des courbes intégrales de champs de vecteurs solutions non nécessairement lipschitziennes du système d’Euler incompressible. On en déduit que le front d’onde analytique (ou Gevrey) de ces solutions est localisé dans la variété caractéristique de l’opérateur linéarisé.

Currently displaying 61 – 75 of 75

Previous Page 4