Displaying 141 – 160 of 371

Showing per page

Instability of the stationary solutions of generalized dissipative Boussinesq equation

Amin Esfahani (2014)

Applications of Mathematics

In this work we study the generalized Boussinesq equation with a dissipation term. We show that, under suitable conditions, a global solution for the initial value problem exists. In addition, we derive sufficient conditions for the blow-up of the solution to the problem. Furthermore, the instability of the stationary solutions of this equation is established.

Integrable three-dimensional coupled nonlinear dynamical systems related to centrally extended operator Lie algebras and their Lax type three-linearization

J. Golenia, O. Hentosh, A. Prykarpatsky (2007)

Open Mathematics

The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients, extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems, is obtained via some special Bäcklund transformation. The connection of this hierarchy with integrable by Lax two-dimensional Davey-Stewartson type systems is studied.

Invariance of the Gibbs measure for the Benjamin–Ono equation

Yu Deng (2015)

Journal of the European Mathematical Society

In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than L 2 , extending the L 2 well-posedness result of Molinet [20].

Invariant measures and long-time behavior for the Benjamin-Ono equation

Yu Deng, Nikolay Tzvetkov, Nicola Visciglia (2014)

Journées Équations aux dérivées partielles

We summarize the main ideas in a series of papers ([20], [21], [22], [5]) devoted to the construction of invariant measures and to the long-time behavior of solutions of the periodic Benjamin-Ono equation.

KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions

A. Sakhnovich (2012)

Mathematical Modelling of Natural Phenomena

The matrix KdV equation with a negative dispersion term is considered in the right upper quarter–plane. The evolution law is derived for the Weyl function of a corresponding auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the unboundedness of solutions is obtained for some classes of the initial–boundary conditions.

L 2 -stability of multi-solitons

Claudio Muñoz (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The aim of this note is to give a short review of our recent work (see [5]) with Miguel A. Alejo and Luis Vega, concerning the L 2 -stability, and asymptotic stability, of the N -soliton of the Korteweg-de Vries (KdV) equation.

Currently displaying 141 – 160 of 371