Displaying 21 – 40 of 43

Showing per page

Spectral invariants for coupled spin-oscillators

San Vũ Ngọc (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.

Stabilization of Schrödinger equation in exterior domains

Lassaad Aloui, Moez Khenissi (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We prove uniform local energy estimates of solutions to the damped Schrödinger equation in exterior domains under the hypothesis of the Exterior Geometric Control. These estimates are derived from the resolvent properties.

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials.

Currently displaying 21 – 40 of 43