Displaying 181 – 200 of 280

Showing per page

Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics

Mireille Bossy, Nicolas Champagnat, Sylvain Maire, Denis Talay (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Motivated by the development of efficient Monte Carlo methods for PDE models in molecular dynamics, we establish a new probabilistic interpretation of a family of divergence form operators with discontinuous coefficients at the interface of two open subsets of d . This family of operators includes the case of the linearized Poisson-Boltzmann equation used to compute the electrostatic free energy of a molecule. More precisely, we explicitly construct a Markov process whose infinitesimal generator...

Propagation of electromagnetic waves in non-homogeneous media

Radjesvarane Alexandre, Hassan Taha (2004)

Applications of Mathematics

We consider electromagnetic waves propagating in a periodic medium characterized by two small scales. We perform the corresponding homogenization process, relying on the modelling by Maxwell partial differential equations.

Quantum Euler-Poisson systems: Existence of stationary states

Ansgar Jüngel, Hailiang Li (2004)

Archivum Mathematicum

A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron...

Radiative Heating of a Glass Plate

Luc Paquet, Raouf El Cheikh, Dominique Lochegnies, Norbert Siedow (2012)

MathematicS In Action

This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient κ ( λ ) to be piecewise constant and null for small values of the wavelength λ as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important...

Residual based a posteriori error estimators for eddy current computation

Rudi Beck, Ralf Hiptmair, Ronald H.W. Hoppe, Barbara Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider H(curl;Ω)-elliptic problems that have been discretized by means of Nédélec's edge elements on tetrahedral meshes. Such problems occur in the numerical computation of eddy currents. From the defect equation we derive localized expressions that can be used as a posteriori error estimators to control adaptive refinement. Under certain assumptions on material parameters and computational domains, we derive local lower bounds and a global upper bound for the total error measured in...

Singularities of eddy current problems

Martin Costabel, Monique Dauge, Serge Nicaise (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the time-harmonic eddy current problem in its electric formulation where the conductor is a polyhedral domain. By proving the convergence in energy, we justify in what sense this problem is the limit of a family of Maxwell transmission problems: Rather than a low frequency limit, this limit has to be understood in the sense of Bossavit [11]. We describe the singularities of the solutions. They are related to edge and corner singularities of certain problems for the scalar Laplace operator,...

Currently displaying 181 – 200 of 280