Page 1 Next

Displaying 1 – 20 of 73

Showing per page

F -manifolds and integrable systems of hydrodynamic type

Paolo Lorenzoni, Marco Pedroni, Andrea Raimondo (2011)

Archivum Mathematicum

We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of F -manifold with compatible connection generalizing a structure introduced by Manin.

Familles de convexes invariantes et équations de diffusion-réaction

Christine Reder (1982)

Annales de l'institut Fourier

Pour localiser la solution d’un système de diffusion-réaction, il suffit de construire une famille de convexes ( K t ) t 0 , invariante par rapport au champ de vecteurs associé à ce système; la solution est alors incluse dans K t à l’instant t dès qu’elle est contenue dans K 0 à l’instant zéro. Les fonctions d’appui associées à de telles familles de convexes sont solutions d’un système différentiel, mais celui-ci peut également engendrer des familles non invariantes.

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2003)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a L Q control problem associated with the linearized equation.

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control problem associated with the linearized equation.

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Finite element approximation for a div-rot system with mixed boundary conditions in non-smooth plane domains

Michal Křížek, Pekka Neittaanmäki (1984)

Aplikace matematiky

The authors examine a finite element method for the numerical approximation of the solution to a div-rot system with mixed boundary conditions in bounded plane domains with piecewise smooth boundary. The solvability of the system both in an infinite and finite dimensional formulation is proved. Piecewise linear element fields with pointwise boundary conditions are used and their approximation properties are studied. Numerical examples indicating the accuracy of the method are given.

Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants

John W. Barrett, Linda El Alaoui (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers

John W. Barrett, Endre Süli (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a general class of coupled FENE-type finitely extensible nonlinear elastic dumbbell models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ ℝd, d = 2 or 3, for the velocity...

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d ,d= 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Finite element approximation of kinetic dilute polymer models with microscopic cut-off

John W. Barrett, Endre Süli (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Galerkin finite element method for the numerical approximation of weak solutions to a coupled microscopic-macroscopic bead-spring model that arises from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The model consists of the unsteady incompressible Navier–Stokes equations in a bounded domain Ω ⊂ d , d = 2 or 3, for the velocity and the pressure of the fluid, with an elastic extra-stress tensor as right-hand side in the momentum equation....

Currently displaying 1 – 20 of 73

Page 1 Next