Page 1 Next

Displaying 1 – 20 of 50

Showing per page

H 2 convergence of solutions of a biharmonic problem on a truncated convex sector near the angle π

Abdelkader Tami, Mounir Tlemcani (2021)

Applications of Mathematics

We consider a biharmonic problem Δ 2 u ω = f ω with Navier type boundary conditions u ω = Δ u ω = 0 , on a family of truncated sectors Ω ω in 2 of radius r , 0 < r < 1 and opening angle ω , ω ( 2 π / 3 , π ] when ω is close to π . The family of right-hand sides ( f ω ) ω ( 2 π / 3 , π ] is assumed to depend smoothly on ω in L 2 ( Ω ω ) . The main result is that u ω converges to u π when ω π with respect to the H 2 -norm. We can also show that the H 2 -topology is optimal for such a convergence result.

Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini Anantharaman, Stéphane Nonnenmacher (2007)

Annales de l’institut Fourier

We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....

Hardy's uncertainty principle, convexity and Schrödinger evolutions

Luis Escauriaza, Carlos E. Kenig, G. Ponce, Luis Vega (2008)

Journal of the European Mathematical Society

We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolutions.

Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Luisa Moschini, Alberto Tesei (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation t u = u + c x 2 u ( 0 < c < n - 2 2 4 ; n 3 ) . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator H u = - u - c x 2 u with the opposite of the weighted Laplacian λ v = 1 x λ div x λ v when λ = 2 - n + 2 c 0 - c .

Hermite pseudospectral method for nonlinear partial differential equations

Ben-yu Guo, Cheng-long Xu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Hermite polynomial interpolation is investigated. Some approximation results are obtained. As an example, the Burgers equation on the whole line is considered. The stability and the convergence of proposed Hermite pseudospectral scheme are proved strictly. Numerical results are presented.

High Frequency limit of the Helmholtz Equations

Jean-David Benamou, François Castella, Thodoros Katsaounis, Benoît Perthame (1999/2000)

Séminaire Équations aux dérivées partielles

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the...

High frequency limit of the Helmholtz equations.

Jean-David Benamou, François Castella, Theodoros Katsaounis, Benoit Perthame (2002)

Revista Matemática Iberoamericana

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...

Currently displaying 1 – 20 of 50

Page 1 Next