Displaying 281 – 300 of 470

Showing per page

An analytical and numerical approach to a bilateral contact problem with nonmonotone friction

Mikaël Barboteu, Krzysztof Bartosz, Piotr Kalita (2013)

International Journal of Applied Mathematics and Computer Science

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach...

An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.

M. A. Rojas-Medar, S. A. Lorca (1995)

Revista Matemática de la Universidad Complutense de Madrid

We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.

An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch, Marguerite Gisclon, Chi-Kun Lin (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x . This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low...

An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch, Marguerite Gisclon, Chi-Kun Lin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss...

An existence proof for the stationary compressible Stokes problem

A. Fettah, T. Gallouët, H. Lakehal (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

An existence result in nonlinear theory of electromagnetic fields

Dorin Iesan, Antonio Scalia (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper is concerned with the nonlinear theory of equilibrium for materials which do not conduct electricity. An existence and uniqueness result is established.

An existence theorem for the Boussinesq equations with non-Dirichlet boundary conditions

Zdeněk Skalák, Petr Kučera (2000)

Applications of Mathematics

The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...

An explicit right inverse of the divergence operator which is continuous in weighted norms

Ricardo G. Durán, Maria Amelia Muschietti (2001)

Studia Mathematica

The existence of a continuous right inverse of the divergence operator in W 1 , p ( Ω ) , 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to show that the continuity also holds for some weighted norms. Our results are valid for Ω ⊂ ℝⁿ a bounded domain which is star-shaped with respect to a ball B ⊂ Ω. The continuity results are obtained by using an explicit solution of the divergence equation and the classical theory of singular integrals...

Currently displaying 281 – 300 of 470