Displaying 21 – 40 of 170

Showing per page

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...

Chute stationnaire d’un solide dans un fluide visqueux incompressible au-dessus d’un plan incliné. Partie 2

M. Hillairet (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous montrons dans cette étude l’existence de configurations stationnaires où une bille tombe le long d’un plan incliné sans le toucher. Nous donnons également des propriétés qualitatives de ces configurations. En particulier, nous nous intéressons à l’orientation du plan par rapport à la verticale quand la masse de la bille est proche de celle d’un volume équivalent de liquide i.e., quand l’écoulement autour de la bille est lent.

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid

Jaime H. Ortega, Lionel Rosier, Takéo Takahashi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying 2 . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.

Coherent nonlinear waves and the Wiener algebra

Guy Métivier, Jean-Luc Joly, Jeffrey Rauch (1994)

Annales de l'institut Fourier

We study oscillatory solutions of semilinear first order symmetric hyperbolic system L u = f ( t , x , u , u ) , with real analytic f .The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in T , X with only the natural hypothesis of coherence.In the special case where L has constant coefficients and the phases are linear, the solutions have asymptotic description u ϵ = U ( t , x , t / ϵ , x / ϵ ) + o ( 1 ) where the profile U ( t , x , T , X ) is almost periodic in ( T , X ) .The main novelty in the analysis is the space of profiles which...

Currently displaying 21 – 40 of 170