A free boundary problem for compressible viscous fluids.
We investigate the behaviour of the meniscus of a drop of liquid aluminium in the neighbourhood of a state of equilibrium under the influence of weak electromagnetic forces. The mathematical model comprises both Maxwell and Navier-Stokes equations in 2D. The meniscus is governed by the Young-Laplace equation, the data being the jump of the normal stress. To show the existence and uniqueness of the solution we use the classical implicit function theorem. Moreover, the differentiability of the operator...
We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational...
We study a two-grid scheme fully discrete in time and space for solving the Navier-Stokes system. In the first step, the fully non-linear problem is discretized in space on a coarse grid with mesh-size H and time step k. In the second step, the problem is discretized in space on a fine grid with mesh-size h and the same time step, and linearized around the velocity uH computed in the first step. The two-grid strategy is motivated by the fact that under suitable assumptions, the contribution of uH...
We address the issue of parameter variations in POD approximations of time-dependent problems, without any specific restriction on the form of parameter dependence. Considering a parabolic model problem, we propose a POD construction strategy allowing us to obtain some a priori error estimates controlled by the POD remainder – in the construction procedure – and some parameter-wise interpolation errors for the model solutions. We provide a thorough numerical assessment of this strategy with the...
The paper deals with deterministic optimal control problems with state constraints and non-linear dynamics. It is known for such problems that the value function is in general discontinuous and its characterization by means of a Hamilton-Jacobi equation requires some controllability assumptions involving the dynamics and the set of state constraints. Here, we first adopt the viability point of view and look at the value function as its epigraph. Then, we prove that this epigraph can always be described...
In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...
In several practically interesting applications of electromagnetic scattering theory like, e.g., scattering from small point-like objects such as buried artifacts or small inclusions in non-destructive testing, scattering from thin curve-like objects such as wires or tubes, or scattering from thin sheet-like objects such as cracks, the volume of the scatterers is small relative to the volume of the surrounding medium and with respect to the wave length of the applied electromagnetic fields. This...
We generalize a classical result of T. Kato on the existence of global solutions to the Navier-Stokes system in C([0,∞);L3(R3)). More precisely, we show that if the initial data are sufficiently oscillating, in a suitable Besov space, then Kato's solution exists globally. As a corollary to this result, we obtain a theory of existence of self-similar solutions for the Navier-Stokes equations.
We consider initial boundary problems of a two-chemical substances chemotaxis system. In the four-dimensional setting, it was shown that solutions exist globally in time and remain bounded if the total mass is less than , whereas the solution emanating from some initial data of large magnitude may blows up. This result can be regarded as a generalization of the well-known problem in the Keller–Segel system to higher dimensions. We will compare mathematical structures of the Keller–Segel system...
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
We deal with a suitable weak solution to the Navier-Stokes equations in a domain . We refine the criterion for the local regularity of this solution at the point , which uses the -norm of and the -norm of in a shrinking backward parabolic neighbourhood of . The refinement consists in the fact that only the values of , respectively , in the exterior of a space-time paraboloid with vertex at , respectively in a ”small” subset of this exterior, are considered. The consequence is that...