Displaying 41 – 60 of 256

Showing per page

The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model

Venkatesh Ramachandramurthy, Nagasundar Kavitha, Agrahara Sanjeevmurthy Aruna (2022)

Applications of Mathematics

The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of...

The Effect of Bacteria on Epidermal Wound Healing

E. Agyingi, S. Maggelakis, D. Ross (2010)

Mathematical Modelling of Natural Phenomena

Epidermal wound healing is a complex process that repairs injured tissue. The complexity of this process increases when bacteria are present in a wound; the bacteria interaction determines whether infection sets in. Because of underlying physiological problems infected wounds do not follow the normal healing pattern. In this paper we present a mathematical model of the healing of both infected and uninfected wounds. At the core of our model is an...

The effective boundary conditions for vector fields on domains with rough boundaries: Applications to fluid mechanics

Eduard Feireisl, Šárka Matušů-Nečasová (2011)

Applications of Mathematics

The Navier-Stokes system is studied on a family of domains with rough boundaries formed by oscillating riblets. Assuming the complete slip boundary conditions we identify the limit system, in particular, we show that the limit velocity field satisfies boundary conditions of a mixed type depending on the characteristic direction of the riblets.

The elliptic problems in a family of planar open sets

Abdelkader Tami (2019)

Applications of Mathematics

We propose, on a model case, a new approach to classical results obtained by V. A. Kondrat'ev (1967), P. Grisvard (1972), (1985), H. Blum and R. Rannacher (1980), V. G. Maz'ya (1980), (1984), (1992), S. Nicaise (1994a), (1994b), (1994c), M. Dauge (1988), (1990), (1993a), (1993b), A. Tami (2016), and others, describing the singularities of solutions of an elliptic problem on a polygonal domain of the plane that may appear near a corner. It provides a more precise description of how the solutions...

The Eulerian limit and the slip boundary conditions-admissible irregularity of the boundary

Piotr Bogusław Mucha (2005)

Banach Center Publications

We investigate the inviscid limit for the stationary Navier-Stokes equations in a two dimensional bounded domain with slip boundary conditions admitting nontrivial inflow across the boundary. We analyze admissible regularity of the boundary necessary to obtain convergence to a solution of the Euler system. The main result says that the boundary of the domain must be at least C²-piecewise smooth with possible interior angles between regular components less than π.

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version...

The existence of an exponential attractor in magneto-micropolar fluid flow via the ℓ-trajectories method

Piotr Orliński (2013)

Colloquium Mathematicae

We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.

Currently displaying 41 – 60 of 256