The existence of global solutions to the elliptic-hyperbolic Davey-Stewartson system with small initial data
We present a method for the construction of artificial far-field boundary conditions for two- and three-dimensional exterior compressible viscous flows in aerodynamics. Since at some distance to the surrounded body (e.g. aeroplane, wing section, etc.) the convective forces are strongly dominant over the viscous ones, the viscosity effects are neglected there and the flow is assumed to be inviscid. Accordingly, we consider two different model zones leading to a decomposition of the original flow...
We establish necessary and sufficient conditions on the real- or complex-valued potential defined on for the relativistic Schrödinger operator to be bounded as an operator from the Sobolev space to its dual .
We obtain inequalities between the eigenvalues of the Schrödinger operator on a compact domain Ω of a submanifold M in with boundary ∂Ω, which generalize many existing inequalities for the Laplacian on a bounded domain of a Euclidean space. We also establish similar inequalities for a closed minimal submanifold in the unit sphere, which generalize and improve Yang-Yau’s result.