Displaying 61 – 80 of 508

Showing per page

On an evolutionary nonlinear fluid model in the limiting case

Stephan Luckhaus, Josef Málek (2001)

Mathematica Bohemica

We consider the two-dimesional spatially periodic problem for an evolutionary system describing unsteady motions of the fluid with shear-dependent viscosity under general assumptions on the form of nonlinear stress tensors that includes those with p -structure. The global-in-time existence of a weak solution is established. Some models where the nonlinear operator corresponds to the case p = 1 are covered by this analysis.

On an existence theorem for the Navier-Stokes equations with free slip boundary condition in exterior domain

Rieko Shimada, Norikazu Yamaguchi (2008)

Banach Center Publications

This paper deals with a nonstationary problem for the Navier-Stokes equations with a free slip boundary condition in an exterior domain. We obtain a global in time unique solvability theorem and temporal asymptotic behavior of the global strong solution when the initial velocity is sufficiently small in the sense of Lⁿ (n is dimension). The proof is based on the contraction mapping principle with the aid of L p - L q estimates for the Stokes semigroup associated with a linearized problem, which is also...

On annealed elliptic Green's function estimates

Daniel Marahrens, Felix Otto (2015)

Mathematica Bohemica

We consider a random, uniformly elliptic coefficient field a on the lattice d . The distribution · of the coefficient field is assumed to be stationary. Delmotte and Deuschel showed that the gradient and second mixed derivative of the parabolic Green’s function G ( t , x , y ) satisfy optimal annealed estimates which are L 2 and L 1 , respectively, in probability, i.e., they obtained bounds on | x G ( t , x , y ) | 2 1 / 2 and | x y G ( t , x , y ) | . In particular, the elliptic Green’s function G ( x , y ) satisfies optimal annealed bounds. In their recent work, the authors...

On approximation of the Neumann problem by the penalty method

Michal Křížek (1993)

Applications of Mathematics

We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.

On Bardina and Approximate Deconvolution Models

Roger Lewandowski (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We first outline the procedure of averaging the incompressible Navier-Stokes equations when the flow is turbulent for various type of filters. We introduce the turbulence model called Bardina’s model, for which we are able to prove existence and uniqueness of a distributional solution. In order to reconstruct some of the flow frequencies that are underestimated by Bardina’s model, we next introduce the approximate deconvolution model (ADM). We prove existence and uniqueness of a “regular weak solution”...

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou (2017)

Proceedings of Equadiff 14

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...

On blow-up for the Hartree equation

Jiqiang Zheng (2012)

Colloquium Mathematicae

We study the blow-up of solutions to the focusing Hartree equation i u t + Δ u + ( | x | - γ * | u | ² ) u = 0 . We use the strategy derived from the almost finite speed of propagation ideas devised by Bourgain (1999) and virial analysis to deduce that the solution with negative energy (E(u₀) < 0) blows up in either finite or infinite time. We also show a result similar to one of Holmer and Roudenko (2010) for the Schrödinger equations using techniques from scattering theory.

Currently displaying 61 – 80 of 508