Remark on the spatial regularity for the Navier-Stokes equations.
In the paper some solution properties of the Love's equation are compared with those of the classical wave equation for a certain class of boundary conditions. The method of small parameter is used.
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in a subdomain . The result that we obtained in this paper is as follows. Suppose that is a given solution of the Navier-Stokes equations. Let be a given initial condition and where is small enough. Then there exists a locally distributed control such that the solution of the Navier-Stokes equations:coincides with...
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain . The result that we obtained in this paper is as follows. Suppose that is a given solution of the Navier-Stokes equations. Let be a given initial condition and where ε is small enough. Then there exists a locally distributed control such that the solution v(t,x) of the Navier-Stokes equations: coincides...
In the talk we shall present some recent results obtained with F. Merle about compactness of blow up solutions of the critical nonlinear Schrödinger equation for initial data in . They are based on and are complementary to some previous work of J. Bourgain about the concentration of the solution when it approaches to the blow up time.
We consider the axisymmetric Navier-Stokes equations with non-zero swirl component. By invoking the Hardy-Sobolev interpolation inequality, Hardy inequality and the theory of (1 < β < ∞) weights, we establish regularity criteria involving , or in some weighted Lebesgue spaces. This improves many previous results.
We study the axisymmetric Navier-Stokes equations. In 2010, Loftus-Zhang used a refined test function and re-scaling scheme, and showed that By employing the dimension reduction technique by Lei-Navas-Zhang, and analyzing , and on different hollow cylinders, we are able to improve it and obtain
We study the Cauchy problem for the MHD system, and provide two regularity conditions involving horizontal components (or their gradients) in Besov spaces. This improves previous results.
We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.
This article recalls the results given by A. Dutrifoy, A. Majda and S. Schochet in [1] in which they prove an uniform estimate of the system as well as the convergence to a global solution of the long wave equations as the Froud number tends to zero. Then, we will prove the convergence with weaker hypothesis and show that the life span of the solutions tends to infinity as the Froud number tends to zero.
We consider Schrödinger operators on with variable coefficients. Let be the free Schrödinger operator and we suppose is a “short-range” perturbation of . Then, under the nontrapping condition, we show that the time evolution operator: can be written as a product of the free evolution operator and a Fourier integral operator which is associated to the canonical relation given by the classical mechanical scattering. We also prove a similar result for the wave operators. These results...