The Helmholtz decomposition in arbitrary unbounded domains - a theory beyond
The homogeneous balance of undetermined coefficients method is firstly proposed to solve such nonlinear partial differential equations (PDEs), the balance numbers of which are not positive integers. The proposed method can also be used to derive more general bilinear equation of nonlinear PDEs. The Eckhaus equation, the KdV equation and the generalized Boussinesq equation are chosen to illustrate the validity of our method. The proposed method is also a standard and computable method, which can...
By using the spectral Galerkin method, we prove the existence of weak solutions for a system of equations of magnetohydrodynamic type in non-cylindrical domains.
We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium...
One shows that the linearized Navier-Stokes equation in , around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller , , where are independent Brownian motions in a probability space and is a system of functions on with support in an arbitrary open subset . The stochastic control input is found in feedback form. One constructs also a tangential boundary noise controller which exponentially stabilizes in probability the equilibrium solution. ...
We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding...
This paper is devoted to the study of smooth flows of density-dependent fluids in or in the torus . We aim at extending several classical results for the standard Euler or Navier-Stokes equations, to this new framework.Existence and uniqueness is stated on a time interval independent of the viscosity when goes to . A blow-up criterion involving the norm of vorticity in is also proved. Besides, we show that if the density-dependent Euler equations have a smooth solution on a given time...
In this article we prove for the existence of the -Helmholtz projection in finite cylinders . More precisely, is considered to be given as the Cartesian product of a cube and a bounded domain having -boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in is solved, which implies existence and a representation of the -Helmholtz projection as...
We formulate the Leray problem for inhomogeneous fluids in two dimensions and outline the proof of the existence of a solution. There are two kinds of results depending on whether the given value for the density is a continuous function or only an function. In the former case, the given densities are attained in the sense of uniform convergence and in the latter with respect to weak-* convergence.
We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.
This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.