Displaying 1241 – 1260 of 3677

Showing per page

Hermite pseudospectral method for nonlinear partial differential equations

Ben-yu Guo, Cheng-long Xu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Hermite polynomial interpolation is investigated. Some approximation results are obtained. As an example, the Burgers equation on the whole line is considered. The stability and the convergence of proposed Hermite pseudospectral scheme are proved strictly. Numerical results are presented.

High Frequency limit of the Helmholtz Equations

Jean-David Benamou, François Castella, Thodoros Katsaounis, Benoît Perthame (1999/2000)

Séminaire Équations aux dérivées partielles

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term (which does not share the...

High frequency limit of the Helmholtz equations.

Jean-David Benamou, François Castella, Theodoros Katsaounis, Benoit Perthame (2002)

Revista Matemática Iberoamericana

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...

High-order fractional partial differential equation transform for molecular surface construction

Langhua Hu, Duan Chen, Guo-Wei Wei (2013)

Molecular Based Mathematical Biology

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...

Homogeneous Cooling with Repulsive and Attractive Long-Range Potentials

M. K. Müller, S. Luding (2011)

Mathematical Modelling of Natural Phenomena

The interplay between dissipation and long-range repulsive/attractive forces in homogeneous, dilute, mono-disperse particle systems is studied. The pseudo-Liouville operator formalism, originally introduced for hard-sphere interactions, is modified such that it provides very good predictions for systems with weak long-range forces at low densities, with the ratio of potential to fluctuation kinetic energy as control parameter. By numerical simulations, ...

Homogenization and diffusion asymptotics of the linear Boltzmann equation

Thierry Goudon, Antoine Mellet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Currently displaying 1241 – 1260 of 3677