Displaying 1261 – 1280 of 3677

Showing per page

Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation

Thierry Goudon, Antoine Mellet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε ) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the compressible Navier–Stokes equations in a porous medium

Nader Masmoudi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the homogenization of the compressible Navier–Stokes system in a periodic porous medium (of period ε) with Dirichlet boundary conditions. At the limit, we recover different systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous medium equation”.

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Homogenized double porosity models for poro-elastic media with interfacial flow barrier

Abdelhamid Ainouz (2011)

Mathematica Bohemica

In the paper a Barenblatt-Biot consolidation model for flows in periodic porous elastic media is derived by means of the two-scale convergence technique. Starting with the fluid flow of a slightly compressible viscous fluid through a two-component poro-elastic medium separated by a periodic interfacial barrier, described by the Biot model of consolidation with the Deresiewicz-Skalak interface boundary condition and assuming that the period is too small compared with the size of the medium, the limiting...

How many are affine connections with torsion

Zdeněk Dušek, Oldřich Kowalski (2014)

Archivum Mathematicum

The question how many real analytic affine connections exist locally on a smooth manifold M of dimension n is studied. The families of general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables.

How many are equiaffine connections with torsion

Zdeněk Dušek, Oldřich Kowalski (2015)

Archivum Mathematicum

The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold M of dimension n is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables.

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

Pierre Degond, Fabrice Deluzet, Dario Maldarella, Jacek Narski, Claudia Negulescu, Martin Parisot (2011)

ESAIM: Proceedings

In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...

Hydrodynamics of Saturn’s Dense Rings

M. Seiß, F. Spahn (2011)

Mathematical Modelling of Natural Phenomena

The space missions Voyager and Cassini together with earthbound observations revealed a wealth of structures in Saturn’s rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn’s moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Furthermore, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed...

Currently displaying 1261 – 1280 of 3677